Characterization of Ryanodine-sensitive Ca²⁺ Release from Microsomal Vesicles of Rat Parotid Acinar Cells: Regulation by Cyclic ADP-ribose

T. Ozawa, A. Nishiyama

Department of Physiology, Tohoku University School of Medicine, Seiryocho 2, 980-77, Sendai, Japan

Received: 11 June 1996/Revised: 14 November 1996

Abstract. We have measured ryanodine (caffeine)sensitive ⁴⁵Ca²⁺ release from isolated microsomal vesicles of endoplasmic reticulum prepared from rat parotid acinar cells. After a steady state of ATP-dependent ⁴⁵Ca²⁺ uptake, the addition of caffeine (40 mM), ryanodine (10~500 µM) or an NAD⁺ metabolite, cyclic ADPribose (cADPR, 4 μ M) released about 10% of the ${}^{45}Ca^{2+}$ that had been taken up. The ⁴⁵Ca²⁺ release was not inhibited by heparin, an antagonist of IP₃ receptor. The effects of caffeine, ryanodine and cADPR on ⁴⁵Ca²⁺ release were also tested in the presence of thapsigargin (TG), an inhibitor of microsomal Ca²⁺-ATPase. When caffeine (10~40 mM), ryanodine (10 µM) or cADPR $(1 \sim 10 \ \mu\text{M})$ was added in the medium with 100 nM TG, a significant ⁴⁵Ca²⁺ release was seen, while higher concentrations of ryanodine (>100 µM) did not cause any ⁴⁵Ca²⁺ release in the presence of TG. The initial rate of caffeine (40 mM)-induced ⁴⁵Ca²⁺ release was increased by a pretreatment with 10 µM ryanodine, whereas the caffeine-induced ⁴⁵Ca²⁺ release was strongly inhibited by the presence of a higher concentration (500 µM) of ryanodine. cADPR-induced ⁴⁵Ca²⁺ release was also inhibited by 500 µM ryanodine. Caffeine (40 mM)- or cADPR (4 μ M)-induced ⁴⁵Ca²⁺ release was abolished by a presence of ruthenium red (50 \sim 100 μ M). The presence of a low concentration (0.5 µM) of cADPR shifted the dose-response curve of caffeine-induced ⁴⁵Ca²⁺ release to the left. These results indicate the presence of a ryanodine sensitive Ca²⁺ release mechanism in the endoplasmic reticulum of rat parotid acinar cells that is distinct from the IP₃-sensitive Ca^{2+} channel and is activated by caffeine, cADPR and a low concentration (10 µM) of ryanodine, but is inhibited by higher concentrations (>100 µM) of ryanodine and ruthenium red. The properties of the ryanodine-sensitive mechanism are similar to that of the ryanodine receptor as described in muscle cells.

Key words: ⁴⁵Ca²⁺ efflux — Caffeine — Ruthenium red — Heparin — Endoplasmic reticulum — Thapsigargin

Introduction

In exocrine glands, mobilization of Ca²⁺ from intracellular Ca²⁺ stores plays a crucial role in triggering enzyme secretion. Receptor stimulation by hormones or neurotransmitters induces an increase in inositol 1,4,5trisphosphate (IP₃), an intracellular messenger, which releases Ca^{2+} from IP₃-sensitive Ca^{2+} pools [3, 35]. The features of the IP₃-sensitive Ca^{2+} channel have been well characterized [9, 11]. In addition to the IP₃-sensitive Ca²⁺ release, caffeine- or Ca²⁺-induced Ca²⁺ release has been demonstrated in pancreatic acinar cells [8, 32] and in lacrimal acinar cells [24]. As in sarcoplasmic reticulum of muscle tissues, a plant alkaloid ryanodine binds to the Ca^{2+} channel protein that is activated by caffeine or Ca^{2+} ; the channel is referred to as a so-called ryanodine receptor. Ryanodine can lock the channel in either an open or closed state, dependeing upon the concentration of ryanodine [7, 25]. The channel protein has been purified, characterized [17, 18, 19] and cloned [30, 38] in skeletal and cardiac muscles. However, in nonexcitable tissues, very few results concerning the ryanodinesensitive mechanism have been reported. Recently, it was shown that acetylcholine-induced Ca²⁺ oscillations or Ca²⁺-ATPase inhibitor thapsigargin (TG)-induced Ca²⁺ oscillations were abolished by an addition of ryanodine in pancreatic acinar cells [40] or in parotid acinar cells [12], respectively. But, detailed information about the ryanodine receptor (channel) has not yet been obtained in exocrine glands.

Correspondence to: T. Ozawa

Evidence suggests that in excitable cells like muscles and neuronal tissues, cyclic ADP-ribose (cADPR), which is an endogenous NAD⁺ metabolite, can induce Ca²⁺ release from a ryanodine-sensitive Ca²⁺ channel [27, 37, 42] and is also an intracellular messenger in addition to IP₃ [4, 22]. This compound also can cause repetitive Ca²⁺ spikes in pancreatic acinar cells [40] that are inhibited by ryanodine. In nonexcitable tissues, the origin of ryanodine or cADPR-sensitive changes remains unclear, since these drug-induced phenomena have been observed so far only on the level of whole cells.

In the present study, we have investigated the properties of the ryanodine-sensitive mechanism by parotid acinar cells in detail by using isolated microsomal vesicles preloaded with $^{45}Ca^{2+}$. Our results clearly indicate that the ryanodine-sensitive Ca^{2+} release mechanism is present in endoplasmic reticulum (ER) of parotid acinar cells. Not only caffeine but also cADPR can activate the ryanodine-sensitive mechanism and cADPR can modulate the caffeine effect. We also show that the effects of ryanodine on the mechanism depend on the concentration of ryanodine; that is, stimulation of the mechanism at a low concentration (10 μ M) and inhibition at higher concentrations (>100 μ M).

Materials and Methods

Creatine kinase and trypsin inhibitor were obtained from Boehringer Mannheim (Mannheim, FRG). Adenosine trisphosphate dipotassium salt (K_2ATP), antimycin A, creatine phosphate disodium salt, benzamidine, thapsigargin, oligomycin, heparin (Mr 4000–6000), IP₃ (potassium salt) and ruthenium red were purchased from Sigma Chemical (St. Louis, MO). Ryanodine was from Calbiochem (La Jolla, CA). Caffeine and collagenase were from Wako Pure Chemical (Osaka, Japan). ⁴⁵CaCl₂ (18–20 Ci/g) was purchased from New England Nuclear (Boston, MA). Cyclic ADP-ribose, which was prepared enzymatically from NAD⁺ with ADP-ribosyl cyclase as described previously [37], was kindly provided by Drs. S. Takasawa and H. Okamoto.

PREPARATION OF MICROSOMAL VESICLES

Parotid glands were removed from 8 male Wistar rats (180-200 g). Isolated acinar cells were prepared by collagenase digestion in a Krebs-Ringer solution containing (in mM): NaCl, 120; KCl, 4.7; KH₂PO₄, 1.2; MgCl₂, 1.2; CaCl₂, 2.0; Hepes, 10; glucose, 15; trypsin inhibitor, 0.1 mg/ml; bovine serum albumin, 0.2% (wt/vol) (pH 7.4) as described previously in the preparation of pancreatic acinar cells [36]. Microsomal vesicles were prepared from isolated cells as described previously [39]. Cells were washed twice in an ice-cold "mannitol buffer" containing (in mM): mannitol, 290; KCl, 10; Hepes, 5; MgCl₂, 1; benzamidine, 1; PMSF, 0.2; and trypsin inhibitor, 20 µg/ml adjusted with tris to pH 7.0. Homogenization and subsequent fractionation steps were performed at 4°C. Cells were homogenized in 20 ml of the "mannitol buffer" by 50 strokes at 1,000 rpm with a tightly fitting teflon homogenizer. The resulting homogenate was centrifuged for 5 min at $100 \times g$ and the pellet rehomogenized. The combined homogenate was centrifuged at $1,000 \times g$ for 15 min and the supernatant

further centrifuged at 11,000 × g for 15 min in a Beckman model L8M centrifuge using a Beckman 70 Ti-fixed rotor. The 11,000 × g supernatant was centrifuged at 27,000 × g for 15 min in the 70 Ti rotor and the 27,000 × g pellet, enriched by approximately threefold in ER [39], was collected. The microsomal vesicles were kept frozen in liquid nitrogen until use. The protein concentration was measured by the method of Bradford (1976) [5] using bovine serum albumin as a standard.

MEASUREMENT OF ⁴⁵Ca²⁺ UPTAKE

Isolated membrane vesicles were preincubated for 15 min at a protein concentration of 0.2 mg/ml in 0.6-1.0 ml of an incubation buffer containing (in mM): KCl, 155; Hepes, 5; CaCl₂, 0.15 (corresponding to 0.002 free Ca2+ concentration); EDTA, 1.0; MgCl₂, 3.57 (corresponding to 1.0 free Mg²⁺ concentration); NaN₃, 10; oligomycin, 0.005; antimycin A, 5 µg/ml; creatine phosphate, 10; creatine kinase, 8 U/ml; and 1 µCi/ml of ⁴⁵CaCl₂, adjusted to pH 7.0 with tris/HCl at 25°C. ⁴⁵Ca²⁺ uptake was initiated by the addition of K₂ATP at a final concentration of 2 mm. After a steady state of ⁴⁵Ca²⁺ uptake, drugs that can induce Ca2+ release from ER, like IP3 or caffeine, were added to the buffer. In some cases, TG microsomal Ca2+-ATPase inhibitor was also given to inhibit a reuptake of the ⁴⁵Ca²⁺ that had been released into the medium. At indicated times, aliquots were removed from the incubation medium and vesicles were separated from the medium by filtering rapidly through cellulose nitrate filter with a pore size of 0.65 µM (Advantec Toyo, Tokyo, Japan), as described previously [2]. Filters were washed with 7 ml of an ice-cold solution containing (in mM): KCl, 140; Hepes, 5; MgCl₂, 1; LaCl₃, 0.1 adjusted to pH 7.0 with KOH. The radioactivity was quantitated using "Clear-sol I®" scintillator (Nacalai Tesque, Kyoto, Japan) in a liquid scintillation counter (LSC-1000, Aloka, Tokyo, Japan).

STATISTICS

Values are presented as mean \pm SEM. P-values were calculated using t-test.

Abbreviations

cADPR:	cyclic ADP-ribose
EDTA:	ethylenediaminetetraacetic acid
ER:	endoplasmic reticulum
Hepes:	N-2-hydroxyethylpiperazine-N'-ethanesulfonic acid
IP ₃ :	D-myo-inositol 1,4,5-trisphosphate
PMSF:	phenylmethylsulfonyl fluoride
SR:	sarcoplasmic reticulum
TG:	thapsigargin

Results

Comparison of $IP_3\mbox{-}and$ Caffeine (Ryanodine)-sensitive ${}^{45}\mbox{Ca}^{2+}$ Release

A steady state of ${}^{45}\text{Ca}^{2+}$ uptake was reached 90~100 min after addition of ATP (Figs. 1 and 2). ${}^{45}\text{Ca}^{2+}$ content of microsomal vesicles 100 min after ATP was 439.0 ± 12.7 nmol/mg protein (n = 25). Figure 1 shows the effects of IP₃ (5 µM) and caffeine (40 mM) on ${}^{45}\text{Ca}^{2+}$ release from

Fig. 1. Effects of heparin on IP₃and caffeine-induced ⁴⁵Ca²⁺ release from microsomal vesicles prepared from parotid acinar cells. Vesicles (0.2 mg/ml) were preincubated for 15 min at 25°C in 1 ml of a KCl buffer containing ⁴⁵CaCl₂ (1 µCi/ml). ⁴⁵Ca²⁺ uptake was initiated by the addition of 2 mM K₂ATP. Heparin (200 µg/ml) was added where indicated. IP₃ (5 µM) and caffeine (40 mM) were subsequently added. Note that heparin does not inhibit caffeine-induced ⁴⁵Ca²⁺ release.

Fig. 2. Comparison of caffeine- and ryanodine-induced ${}^{45}Ca^{2+}$ release from microsomal vesicles. Experimental procedures were the same as described for Fig. 1. After a steady state of ATP dependent ${}^{45}Ca^{2+}$ uptake, caffeine (40 mM) and ryanodine (10, 500 μ M) were added where indicated.

microsomal vesicles in the absence and presence of heparin (200 µg/ml), which is known to inhibit IP₃-mediated Ca^{2+} release [15, 16]. In the absence of heparin, both IP₃ and caffeine caused small ${}^{45}Ca^{2+}$ releases, which were approximately 10% of the ${}^{45}Ca^{2+}$ that had been taken up. But when heparin was added to vesicles prior to IP₃ or caffeine, the IP₃ effect was abolished, while the caffeine effect did not change (Fig. 1). Figure 2 shows the effect of ryanodine on microsomal ⁴⁵Ca²⁺ release. An addition of ryanodine (10 or 500 µM) at a steady state significantly released a ⁴⁵Ca²⁺ for 12 min; % of the ⁴⁵Ca²⁺ content before an addition of ryanodine was $6.5 \pm 1.3\%$ (n = 7, P < 0.01) at 10 μ M or 8.4 \pm 0.9% (n = 4, P <0.01) at 500 μ M. It was a similar amount of ${}^{45}Ca^{2+}$ as compared to caffeine (40 mM) (Fig. 2). Ryanodineinduced ⁴⁵Ca²⁺ release was not inhibited by the presence of heparin (data not shown). These results indicate that

caffeine or ryanodine activate a mechanism that is distinct from the $\rm IP_3\text{-}sensitive \ Ca^{2+}$ channel.

Effects of Caffeine and Ryanodine in the Presence of $\ensuremath{\mathsf{TG}}$

To exclude IP₃-sensitive mechanism involvement in the microsomal Ca²⁺ release, the following experiments were done in the presence of heparin (200 μ g/ml). Thapsigargin (TG) microsomal Ca²⁺-ATPase inhibitor was added at a steady state to inhibit a reuptake of ⁴⁵Ca²⁺ after drug-induced ⁴⁵Ca²⁺ release as shown in Fig. 1. Figure 3 shows a dose-dependent effect of caffeine on ⁴⁵Ca²⁺ release in the presence of 100 nM TG where ⁴⁵Ca²⁺ uptake into microsomal vesicles was completely inhibited in pancreatic acinar cells [33] or in pa-

pretreatment of ryanodine on ⁴⁵Ca²⁺ release was also

investigated. When microsomal vesicles were preincu-

bated with low or high concentration of ryanodine, no

effects of ryanodine on ⁴⁵Ca²⁺ uptake and TG-induced

 45 Ca²⁺ decrease after a steady state were seen (*data not*

shown). But, when caffeine (40 mM) was added with TG

Fig. 3. Effect of caffeine on ⁴⁵Ca²⁺ release from microsomal vesicles in the presence of thapsigargin (TG). Vesicles (0.2 mg/ml) were incubated in 0.6 ml of the same medium as described for Fig. 1. One hundred minutes after an addition of ATP, caffeine (10~40 mM) was added with TG (100 nM) to inhibit a reuptake of ⁴⁵Ca²⁺ that had been released into the medium. Heparin (200 µg/ml) was also added 5 min before the addition of TG to block the IP₃-sensitive Ca²⁺ channel. Microsomal ⁴⁵Ca²⁺ content preceding the addition of TG was 452.8 ± 7.7 nmol/mg protein (n = 111), and the level of each curve was superimposed to zero. The decrease in ⁴⁵Ca²⁺ content after addition of TG (at 0 min) is represented on the vertical line. Caffeine-induced decrease with TG was compared to control with TG alone. Each point shows mean \pm SE and *n* indicates number of experiments.

in the presence of 500 µM ryanodine, caffeine-induced $^{45}\text{Ca}^{2+}$ release was abolished (Fig. 5). The preincubation of 10 μ M ryanodine significantly increased the initial rate of the caffeine-induced ${}^{45}Ca^{2+}$ release (Fig. 5, n = 5 of 9) (26.9 \pm 5.1 nmol/mg/protein/min (n = 5) without ryanodine vs. 41.9 ± 3.6 nmol/mg/protein/min (n = 5) with ryanodine P < 0.05). The effect on the ⁴⁵Ca²⁺ release of ruthenium red, an inhibitor of caffeine- or Ca²⁺induced Ca^{2+} release in exocrine glands [8, 24] as well as in excitable tissues [26, 29], was also investigated. When 50 µM ruthenium red, which blocks the releasing mechanism in brain [26] and lacrimal gland [24], was added together with TG and caffeine (40 mM), the caffeine effect was abolished (Fig. 5).

EFFECTS OF CYCLIC ADP-RIBOSE

5

6

When micromolar concentration of cyclic ADP-ribose (cADPR), an endogenous regulator of ryanodinesensitive Ca²⁺ release mechanism [27, 37, 42], was added to the medium after a steady state of ${}^{45}Ca^{2+}$ uptake in the presence of TG, ⁴⁵Ca²⁺ was released in a dosedependent manner (Fig. 6A). The maximal effect was seen at 4 µM cADPR and no additional effect was observed at 10 µM cADPR. The dose-dependent effect of cADPR at concentrations of micromolar range was obtained also in the absence of TG (data not shown). Figure 6B shows that a pretreatment of 500 μ M ryanodine completely inhibited the cADPR (4 μ M)-induced ⁴⁵Ca²⁺ release. Ruthenium red (50 µM) also abolished the effect of 4 µM cADPR (data not shown). In sea urchin egg

0

10

20

30

40

ŤG

Fig. 4. Effects of ryanodine on ⁴⁵Ca²⁺ release from microsomal vesicles in the presence of TG and heparin. Experimental procedures were the same as described for Fig. 3. After a steady state of ⁴⁵Ca²⁺ uptake, ryanodine (10 and 500 µM) were added to the medium with TG. Ten micromolar of ryanodine caused a slow, but significant ⁴⁵Ca²⁺ release. while the addition of 500 µM ryanodine with TG decreased a small amount of ⁴⁵Ca²⁺, which was not significantly different from the control with TG alone. Each point shows mean \pm SE and *n* is number of experiments. Asterisks give the level of significant difference as compared to the decrease obtained for control with TG alone at the corresponding time. *P < 0.05, **P <

> Fig. 5. Effects of ryanodine and ruthenium red on caffeine-induced 45Ca2+ release in the presence of TG and heparin. After a steady state of ⁴⁵Ca²⁺ uptake, caffeine (40 mM) was added with TG in the absence and presence of ryanodine (Ry.: 10, 500 µM) or ruthenium red (R.R.: 50 µM). Ryanodine was present from the beginning of incubation and ruthenium red was given together with TG. Note that 10 µM ryanodine enhanced the caffeine-induced 45Ca2+ release and ryanodine (500 µM) or ruthenium red strongly inhibited the caffeine effect. One out of three similar experiments.

homogenates, Ca^{2+} or caffeine-induced Ca^{2+} release was potentiated by the presence of lower concentrations (20~40 nM) of cADPR, at which Ca^{2+} release was not induced by itself [21]. When 0.5 μ M cADPR, which did not have a significant ${}^{45}Ca^{2+}$ release (*data not shown*), was added to the microsomal vesicles at a steady state prior to caffeine, the caffeine-induced ${}^{45}Ca^{2+}$ release was increased as compared to the release without cADPR. Figure 7 shows dose-response curves of caffeine-induced ${}^{45}Ca^{2+}$ release for 2 min in the absence and presence of 0.5 μ M cADPR. The pretreament of 0.5 μ M cADPR shifted the curve to the left. At 10 mM caffeine, 0.5 μ M cADPR significantly stimulated the release (-0.8

 \pm 0.9 nmol/mg protein (n = 4) without cADPR vs. 18.7 \pm 2.8 nmol/mg protein (n = 4) with cADPR P < 0.001, Fig. 7), while at higher concentrations of caffeine, the stimulation was not significant (P > 0.05).

Discussion

In the present study, we demonstrate and characterize the ryanodine (caffeine)-sensitive Ca^{2+} release mechanism in the ER of parotid acinar cells. To our knowledge, this is the first report of the ryanodine- and cADPR-induced Ca^{2+} release from microsomes prepared from nonexcitable tissues. Present data directly show that a low con-

Fig. 6. (A) Dose-dependent effect of cyclic ADP-ribose (cADPR) on ⁴⁵Ca²⁺ release from microsomal vesicles in the presence of TG and heparin. After a steady state of ⁴⁵Ca²⁺ uptake, cADPR (1~10 μM) was added with TG. (B) Effect of ryanodine (Ry. 500 µM) on cADPR (4 μ M)-induced ⁴⁵Ca²⁺ release. Treatments of ryanodine was the same as described for Fig. 5. Note that 4 µM cADPR had a maximal release and the release was completely abolished by the presence of ryanodine (500 µM). Each figure is one out of two or three similar experiments.

centration (10 µM) of ryanodine and cADPR as well as caffeine activate the IP₃-insensitive mechanism which is present in the ER membrane (Figs. 3, 4, and 6). In addition, ryanodine at higher concentrations (>100 µM) and ruthenium red inhibits the caffeine- or cADPR-induced 45 Ca²⁺ release (Figs. 5, 6 and *data not shown*). The properties of the releasing mechanism are similar to those of the ryanodine receptors in muscles [25, 27] and neuronal tissues [26, 42]. Our results also indicate that IP₃ and drugs that activate the ryanodine-sensitive mechanism, like ryanodine or caffeine, act on different mechanisms of the ER, since caffeine, ryanodine and cADPR are effective even in the presence of heparin (Figs. 3 to 7), and IP₃-induced ${}^{45}Ca^{2+}$ release is not inhibited by the presence of 500 µM ryanodine (data not shown). However, it is not clear from our results whether two different mechanisms are located in different Ca²⁺

pools or partially in the same pool as shown in pancreatic microsomal vesicles [32].

Characteristics of Ryanodine-sensitive $Ca^{2+}\ Release$

Plant alkaloid ryanodine can lock the ryanodine-sensitive Ca^{2+} channel to an "open state" at low concentrations (<10 μ M). In this state, Ca^{2+} -induced Ca^{2+} release, which is induced by Ca^{2+} concentrations higher than 1 μ M, is stimulated [25]. In parotid acinar cells, 10 μ M ryanodine causes a ${}^{45}Ca^{2+}$ release from the microsomal vesicles in the presence of a micromolar free Ca^{2+} concentration of the medium (Figs. 2 and 4). Our results also show that 10 μ M ryanodine increases an initial rate of the caffeine (40 mM)-induced ${}^{45}Ca^{2+}$ release (Fig. 5).

Fig. 7. Dose-response curves for caffeine-induced ⁴⁵Ca²⁺ release in the absence (\bigcirc) and the presence of cADPR (0.5 μM) (•). Experimental procedures were the same as described for Fig. 3, except that cADPR (0.5 µM) was given in the medium 5 min before addition of TG. The caffeine-induced ⁴⁵Ca²⁺ release (for 2 min), which is represented on the vertical line, was determined at each caffeine concentration in the absence and presence of cADPR by subtracting the decrease in ⁴⁵Ca²⁺ content with TG alone from the decrease with caffeine plus TG. Each point shows mean ± SE from 3-5 paired experiments. Note that cADPR (0.5 μ M) significantly (*P < 0.001) increased the release by 10 mM caffeine.

Stimulation of caffeine-induced Ca^{2+} release by 10 μM ryanodine has also been shown in excitable tissues based on the observation that a pretreatment of 10 µM ryanodine prior to the addition of caffeine leads to a complete discharge from the caffeine-sensitive store [1, 31]. On the other hand, ryanodine can lock the channel to a "closed state" at higher concentrations (>100 µM) [25]. Five hundred micromoles ryanodine does not induce the $^{45}\text{Ca}^{2+}$ release from the vesicles (Fig. 4) and strongly inhibits the ${}^{45}Ca^{2+}$ release activated by caffeine (Fig. 5) or cADPR (Fig. 6B). Previous studies have shown that caffeine- or cADPR-induced Ca²⁺ response is blocked by the presence of ryanodine at higher concentrations (≥ 50 μ M) [26, 27], in some cases even at 10 μ M [40]. We have a discrepancy in ryanodine effect at 500 µM between the absence and presence of TG. In the absence of TG, 500 μ M ryanodine causes a 45 Ca²⁺ release as in the case of 10 µM (Fig. 2), while in the presence of TG, no ${}^{45}\text{Ca}{}^{2+}$ release is seen at 500 μM (Fig. 4). We do not know why 500 µM ryanodine induces the release when the microsomal Ca²⁺-pump is not inhibited. Ryanodine effects are quite complicated and it is known that stimulation or inhibition of Ca²⁺ efflux are dependent on temperature, incubation time and Ca²⁺ concentration as well as ryanodine concentration [25]. In any case, our data show, for the first time, that ryanodine has a biphasic effect on microsomal Ca²⁺ release in nonexcitable cells.

DOES CADPR ACT AS AN ACTIVATOR OR A MODULATOR?

Intracellular messenger cADPR is synthesized from β -NAD⁺ by the enzyme ADP-ribosyl cyclase, which can

be activated by cGMP in sea urchin eggs [14]. The formation of cADPR leads to Ca²⁺ release through the ryanodine-sensitive release mechanism. A maximal cADPR concentration for cADPR-induced Ca²⁺ release is 100~250 nM in many excitable tissues [27, 37, 42], while in parotid acinar cells, cADPR is effective at a micromolar concentration (Fig. 6A). In addition, it also shows that cADPR activates the ryanodine-sensitive Ca²⁺ release mechanism, since both 500 µM ryanodine and 50 µM ruthenium red inhibit the cADPR-induced ⁴⁵Ca²⁺ release (Fig. 6B and data not shown). Quite recent studies have pointed out that in sea urchin eggs, cADPR not only directly activates the Ca²⁺ release channel, but can also play a modulator role by increasing Ca²⁺ and caffeine sensitivity of the release channel at lower concentrations [21, 23]. Present data show that 0.5 µM cADPR, which does not induce a significant ⁴⁵Ca²⁺ release (data not shown), increases the affinity to caffeine and shifts the dose response curve for caffeine-induced $^{45}\text{Ca}^{2+}$ release to the left (Fig. 7). In the modulator model proposed by Lee et al. (1995), cADPR modulates Ca^{2+} or caffeine effects on the ryanodine-sensitive Ca^{2+} channel at an endogenous level [23]. We do not know to what extent the intracellular level of cADPR in parotid acinar cells increases by receptor stimulation. However, an endogenous level of cADPR in rat brain, heart and liver has been reported to be 200 to 680 nm [41]. As cADPR potentiates the caffeine effect at a concentration of 500 nm, which is thought to be near the endogenous level of rat parotid acinar cells, there is a possibility that cADPR can increase the Ca²⁺ affinity of Ca²⁺-induced Ca²⁺ release in physiological conditions.

Caffeine [10] and cADPR [21], which are known to increase Ca^{2+} affinity to Ca^{2+} -induced Ca^{2+} release, were

effective in the microsomal ${}^{45}Ca^{2+}$ release (Figs. 3 and 6). But we did not find direct evidence that the ambient Ca^{2+} activated the releasing mechanism. Further study concerning the involvement of the Ca^{2+} should be made by monitoring extravesicular Ca^{2+} .

In skeletal and cardiac muscles, the features of the ryanodine-sensitive Ca^{2+} channel (receptor) have been characterized not only from the study of Ca^{2+} efflux but also from the measurement of single channel currents by incorporating SR vesicles into planar lipid bilayers [34] and from binding assay of ³H labeled ryanodine to the receptor protein [6, 28]. However, in nonexcitable tissues, very few reports about the channel (receptor) have been published. Further exploration is needed to understand the features of the ryanodine-sensitive mechanism on ER by using the isolated microsomal vesicles.

We thank Drs. H. Okamoto and S. Takasawa for a generous gift of cADPR. This work was supported by Grant-in-Aid for Science Research to T.O. (NO. 07670046) from the Japanese Ministry of Education, Science and Culture.

References

- 1. Barry, V.A., Cheek, T.R. 1994. A caffeine- and ryanodinesensitive intracellular Ca^{2+} store can act as a Ca^{2+} source and a Ca^{2+} sink in PC12 cells. *Biochem. J.* **300:**589–597
- Bayerdörffer, E., Eckhardt, L., Haase, W., Schulz, I. 1985. Electrogenic calcium transport in plasma membrane of rat pancreatic acinar cells. *J. Membrane Biol.* 84:45–60
- Berridge, M.J., Irvine, R.F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. *Nature* 312:315– 321
- Berridge, M.J. 1993. A tale of two messengers. *Nature* 365:388– 389
- Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* 72:248–254
- Carroll, S., Skarmeta, J.G., Yu, X., Collins, K.D., Inesi, G. 1991. Interdependence of ryanodine binding, oligomeric receptor interactions, and Ca²⁺ release regulation in junctional sarcoplasmic reticulum. *Arch. Biochem. Biophys.* 290:239–247
- Chu, A., Díaz-Muñoz, M., Hawkes, M.J., Brush, K., Hamilton, S.L. 1990. Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel. *Mol. Pharmacol.* 37:735–741
- Dehlinger-Kremer, M., Zeuzem, S., Schulz, I. 1991. Interaction of caffeine-, IP₃- and vanadate-sensitive Ca²⁺ pools in acinar cells of the exocrine pancreas. *J. Membrane Biol.* 119:85–100
- Ehrlich, B.E., Watras, J. 1988. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. *Nature* 336:583–586
- Endo, M. 1977. Calcium release from the sarcoplasmic reticulum. *Physiol. Rev.* 57:71–108
- Ferris, C.D., Snyder, S.H. 1992. Inositol 1,4,5-trisphosphateactivated calcium channels. Annu. Rev. Physiol. 54:469–488
- Foskett, J.K., Wong, D. 1991. Free cytoplasmic Ca²⁺ concentration oscillations in thapsigargin-treated parotid acinar cells are caffeineand ryanodine-sensitive. *J. Biol. Chem.* 266:14535–14538
- 13. Fukushi, Y., Ozawa, T., Wakui, M., Nishiyama, A. 1995. Sr²⁺ can

pass through Ca^{2+} entry pathway activated by Ca^{2+} depletion, but can be hardly taken up by the Ca^{2+} stores in the rat salivary acinar cells. *Tohoku J. Exp. Med.* **176:**83–97

- Galione, A., White, A., Willmott, N., Turner, M., Potter, B.V.L., Watson, S.P. 1993. cGMP mobilizes intracellular Ca²⁺ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. *Nature* 365:456–459
- Ghosh, T.K., Eis, P.S., Mullaney, J.M., Ebert, C.L., Gill, D.L. 1988. Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin. J. Biol. Chem. 263:11075–11079
- Guillemette, G., Lamontagne, S., Boulay, G., Mouillac, B. 1989. Differential effects of heparin on inositol 1,4,5-trisphosphate binding, metabolism, and calcium release activity in the bovine adrenal cortex. *Mol. Pharmacol.* 35:339–344
- Inui, M., Saito, A., Fleischer, S. 1987*a*. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. *J. Biol. Chem.* 262:1740–1747
- Inui, M., Saito, A., Fleischer, S. 1987b. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J. Biol. Chem. 262:15637–15642
- Lai, F.A., Erickson, H.P., Rousseau, E., Liu, Q.Y., Meissner, G. 1988. Purification and reconstitution of the calcium release channel from skeletal muscle. *Nature* 331:315–319
- Lai, F.A., Meissner, G. 1989. The muscle ryanodine receptor and its intrinsic Ca²⁺ channel activity. *J. Bioenerg. Biomembr.* 21:227– 246
- Lee, H.C. 1993. Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J. Biol. Chem. 268:293–299
- Lee, H.C., Aarhus, R., Walseth, T.F. 1993. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. *Science* 261:352–355
- Lee, H.C., Aarhus, R., Graeff, R.M. 1995. Sensitization of calcium-induced calcium release by cyclic ADP-ribose and calmodulin. J. Biol. Chem. 270:9060–9066
- Marty, A., Tan, Y.P. 1989. The initiation of calcium release following muscarinic stimulation in rat lacrimal glands. *J. Physiol.* 419:665–687
- Meissner, G. 1986. Ryanodine activation and inhibition of the Ca²⁺ release channel of sarcoplasmic reticulum. *J. Biol. Chem.* 261:6300–6306
- Mészáros, L.G., Volpe, P. 1991. Caffeine- and ryanodine-sensitive Ca²⁺ stores of canine cerebrum and cerebellum neurons. *Am. J. Physiol.* 261:C1048–C1054
- Mészáros, L.G., Bak, J., Chu, A. 1993. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca²⁺ channel. *Nature* 364:76–79
- Michalak, M., Dupraz, P., Shoshan-Barmatz, V. 1988. Ryanodine binding to sarcoplasmic reticulum membrane; comparison between cardiac and skeletal muscle. *Biochim. Biophys. Acta* **939**:587–594
- Miyamoto, H., Racker, E. 1982. Mechanism of calcium release from skeletal sarcoplasmic reticulum. J. Membrane Biol. 66:193– 201
- Otsu, K., Willard, H.F., Khanna, V.K., Zorzato, F., Green, N.M., MacLennan, D.H. 1990. Molecular cloning of cDNA encoding the Ca²⁺ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. *J. Biol. Chem.* 265:13472–13483
- Oyamada, H., Iino, M., Endo, M. 1993. Effects of ryanodine on the properties of Ca²⁺ release from the sarcoplasmic reticulum in skinned skeletal muscle fibres of the frog. *J. Physiol* 470:335–348
- Ozawa, T., Schulz, I. 1991. H⁺ uptake increases GTP-induced connection of inositol 1,4,5-trisphosphate- and caffeine-sensitive

calcium pools in pancreatic microsomal vesicles. *Biochem. Bio-phys. Res. Commun.* 180:755–764

- Ozawa, T., Thévenod, F., Schulz, I. 1995. Characterization of two different Ca²⁺ uptake and IP₃-sensitive Ca²⁺ release mechanisms in microsomal Ca²⁺ pools of rat pancreatic acinar cells. *J. Membrane Biol.* 144:111–120
- Rousseau, E., Smith, J.S., Meissner, G. 1987. Ryanodine modifies conductance and gating behavior of single Ca²⁺ release channel. *Am. J. Physiol.* 253:C364–C368
- 35. Streb, H., Irvine, R.F., Berridge, M.J., Schulz, I. 1983. Release of Ca²⁺ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. *Nature* **306**:67–69
- Streb, H., Schulz, I. 1983. Regulation of cytosolic free Ca²⁺ concentration in acinar cells of rat pancreas. *Am. J. Physiol.* 245:G347–G357
- Takasawa, S., Nata, K., Yonekura, H., Okamoto, H. 1993. Cyclic ADP-ribose in insulin secretion from pancreatic β cells. *Science* 259:370–373

- Takeshima, H., Nishimura, S., Matsumoto, T., Ishida, H., Kangawa, K., Minamino, N., Matsuo, H., Ueda, M., Hanaoka, M., Hirose, T., Numa, S. 1989. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. *Nature* 339:439–445
- Thévenod, F., Schulz, I. 1988. H⁺-dependent calcium uptake into an IP₃-sensitive calcium pool from rat parotid gland. *Am. J. Physiol.* 255:G429–G440
- Thorn, P., Gerasimenko, O., Petersen, O.H. 1994. Cyclic ADPribose regulation of ryanodine receptors involved in agonist evoked cytosolic Ca²⁺ oscillations in pancreatic acinar cells. *EMBO J.* 13:2038–2043
- Walseth, T.F., Aarhus, R., Zeleznikar, R.J. Jr., Lee, H.C. 1991. Determination of endogenous levels of cyclic ADP-ribose in rat tissues. *Biochem. Biophys. Acta* 1094:113–120
- White, A.M., Watson, S.P., Galione, A. 1993. Cyclic ADP-riboseinduced Ca²⁺ release from rat brain microsomes. *FEBS Lett.* 318:259–263